Intel’s Kaby Lake, the company’s 7th-generation Core microprocessor, was never meant to be.

Broadwell, then Skylake: Intel’s tick-tock model was supposed to move on from there to the 10-nm Cannon Lake microprocessor next on Intel’s roadmap. Struggles with 10-nm development forced Intel into its new Kaby Lake processor, however, which officially launched Tuesday.

The “7th Gen” designation is now part of Intel’s official branding.

Maybe it’s no surprise, then, that its benefits are somewhat milder than in generations past. There’s a mere 12- to 19-percent bump in integer performance, helped by a more responsive “turbo boost” capability. A dedicated, advanced video engine promises some real gains—a whopping 2.6X increase in overall battery life when playing back 4K video using specific codecs.

Otherwise, what makes Kaby Lake attractive is its familiarity: Manufacturing it should go smoothly and reliably, analysts say, and over a hundred PC designs are lined up for launch.

At its recent Intel Developer Forum, Intel said it had begun shipping Kaby Lake. The first 2-in-1 PCs and ultrathin laptops will appear this fall, company executives said at a recent briefing. For now, Intel has made a small selection of Kaby Lake chips public: the Y-series (4.5-watt parts) for the lowest-power devices, and the more powerful 15-watt U-series chip. All include two processor cores and four threads.

Intel’s 7th-gen Kaby Lake is built on a 14-nm process similar to that of Skylake CPUs, but manufacturing tweaks give it a performance boost, the company says.

Why this matters: Intel’s new processors typically usher in a new generation of PCs, as their makers pray consumers will rush out to buy new hardware. Kaby Lake, seems optimized for what consumers are actually doing, rather than trying to create a new market (VR, anyone?). But there’s another factor to consider: AMD’s Zen, a rival processor architecture that haspromised to rival Intel’s performance. Perhaps by next summer, consumers will have some true choice in their next PC.

Kaby Lake’s modest boost in performance

For years, Intel has operated on a “tick-tock” strategy, first migrating an existing design to a finer, more efficient manufacturing process (tick), then rearchitecting the chip with new features and optimizations (tock). Kaby Lake interrupts the process, acting as a second tock after Skylake. Intel was challenged to give Kaby Lake room to improve upon its predecessor.


Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.